Mathematics for Multimedia (MATLD0130), 5 op
Perustiedot
Kurssin nimi: | Mathematics for Multimedia |
Winhakoodi: | MATLD0130 |
Kurren lyhenne: | MathMM |
Opintopisteet: | 5 |
Opintojakson taso: | Perusopinnot |
Toteutusvuosi: | 1.vsk |
Jakso: | Kevätlukukausi, 3.jakso, 4.jakso |
Lukuvuosi: | 0607 |
Opetuskieli: | English |
Opettaja: | Jaakko Pitkänen |
Lopullinen arviointi: | Arvosteluasteikolla (0-5) |
Kuvaukset
Esitietovaatimukset
Engineering Mathematics
Sisältö (ydinaines ja -osaaminen)
Complex numbers: representations and rules. Bilinear interpolation. Gradient and directional derivative. Integral function and definite integral. Integration of elementary functions; esp. constant, linear and piecewise constant and piecewise linear functions: definite integral as a sum; integration of data. Idealised image as a mathematical model of an image and a digital image. Image processing with a computer: pixel group operations (masks, filtering, nearest neighbour methods); image enhancement: edges, smoothing, sharpening etc.; analysis of filters.
Sisältö (täydentävä ja erityisosaaminen)
Integration techniques: integration by parts and by substitution. Numerical methods of integration. Integrals in mathematical models: quantity elements. Filters as mapping functions. Least squares method in image processing. Nearest neighbour and bilinear interpolation in image processing. Processing a coloured image: Bayer filter pattern.
Tiedolliset oppimistulokset (ydinaines ja -osaaminen)
After completing the course the student will understand basic concepts in integration and image processing. Will know several ways to represent data and information. Will understand role of differentiation and integration in engineering applications. Will understand basic methods how to manipulate digital images.
Taidolliset oppimistulokset (ydinaines ja -osaaminen)
After completing the course the student will be able to solve simple integration problems analytically or numerically, also with the aid of a computer. Will be able to manipulate digital images by mask methods in spatial domain by a computer. Will be able to model simple and practical integration problems and solve them.
Kirjallisuus ja muu materiaali
Opetusmenetelmät
Opiskelijan kuormittavuus
Luennot - 42
Itsenäinen työskentely ja kirjallisuuteen tutustuminen - 60
Tentti - 5
Projekti - 15
Laboratoriotyöt - 28
Arvioinnin perusteet
Two examinations with approval (at least 40% of the maximum), laboratory exercises and a group work.